
 The Electronic Journal of Mathematics and Technology, Volume 15, Number 3, ISSN 1933-2823 

 

 

 How Software can Revolutionize the Way We Teach 

Graphing a Function  

Vladimir Nodelman 

Email: nodelman@hit.ac.il, vladinod@gmail.com 

Department of Computer Sciences, 

Holon Institute of Technology 

ISRAEL 

Abstract 

One of the typical tasks in the study of functions is sketching of their graphs. The acquired skills, as 

well as the ability to read graphs, are notably useful in the later life [2], [3].  

The software used in teaching mathematics automatically builds ready-made graphs. While studying 

sketching these graphs are unacceptable.  

Traditionally, sketching done by hand on paper. Nowadays (rarely) this can be done on a computer 

monitor as a freehand drawing. The resulting curves are approximate and rough. 

This paper illustrates the method of sketching graphs with intensive use of software.  

In general, the types of student’s activities do not depend on the specificity of functions. They explore 

a common model with the help of author's non-profit software "VisuMatica”. This model includes a 

function y = f(x) with a hidden graph and the ability to visualize its characteristic properties: 

• Intervals of sign constancy, 

• Discontinuities, 

• Local max/min, 

• Supremum/infimum, 

• Critical points, 

• Asymptotes, 

• Domain/Range, 

• Convexity and inflection points.  

Using the approaches demonstrated in this paper, student builds a sketch of the graph (one or more 

of its branches), by setting control points. The program connects them by smooth curves. These curves 

can be edited by dragging, exact locating, adding and removing control points.  

The result checked by unhiding the graph and comparing it with the constructed sketch. 

The model is universal: to build a sketch of a graph of another function, it is enough to redefine the 

expression of f(x) and the whole show (except of the old sketch) rebuilds automatically. 

1. Software in function’s studies  

The characteristic properties studied from the very beginning of introduction of the concept of 

function. A suitable software can help students to grasp their meaning. Unfortunately, the known 

software sometimes not only do not support the necessary educational activities, but also incorrectly 

represent the graph of the function itself, in particular, its continuity and isolated points.  
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Let us see how VisuMatica can help in this matter. 

1.1. Increasing, Decreasing and Monotonic functions 

Not formal interpretation of function increasing is the increasing of the value of f(x), when the 

argument x grows. Naturally, x grows from left to right along the x-axis. The proper model it 

extremely simple (Fig.1 a): the graph of some function, f1(x), say, y = sin(x) + ax (a = 0.3) and a point 

on it, which defined as P(b, f1(b)). The point P projected onto coordinate axes. The green point on the 

x-axis presents abscissa (x = b) and the red point on the y-axis – ordinate    (y = f1(b)) of point P.  

  
a)                                                                  b) 

Figure 1 

During the animation1 of parameter b, point P slides across the graph from left to right, and students 

observe the behavior of the function by watching the movement of the red point and the changing 

number (red) - the value of f1(b). They discover points of increasing and decreasing in accordance to 

the movement of red point. After changing the value of parameter a to a = 1 (a = -1) and repeating 

the animation of parameter b students notice that the new function increase (decrease) in all points of 

its domain. Set the value of a back to 0.3. In this case, as we saw, the points where function 

increase/decrease are not isolated, but fill in certain intervals on the abscissa axis.  

Trying to describe in words the observed situation of increasing function, we bring students to the 

following formulation: "a function increases if its value at the "nearest-next" point is greater than at 

the previous one”. 

VisuMatica includes a variable TINY as a representative of the concept of "tiny" positive number. 

This helps to formulate the last "definition" in the form of the following inequality f1(x + TINY) > 

                                                            
1 In VisuMatica, when any parameter is animated, its value cyclically increases within the corresponding 

interval. 
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f1(x). After adding this inequality our model (Fig.1 b) presents the increasing intervals as yellow 

strips2. Check the correctness of the show by animation of the b parameter.  

- Check what happens when parameter a = 0.99, 1, -1. Explain your observations. 

- Redefine the inequality by f1(x + TINY) < f1(x). Play with values of a. Explain your 

observations. 

Acquaintance with the concept of a derivative allows seeing in these inequalities prototypes of 

conditions for the sign constancy of the derivative. Really, in case of increasing: 
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The awareness of this fact makes it easier for students, based on their experience, to understand that 

if function f(x) is differentiable on interval (m, n), then there are the following dependencies between 

the character of monotonicity and the sign of the derivative on the interval (m, n). In brief, we 

demonstrate this in Fig.2. 
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               Figure 2. Increasing, stability and decreasing of the function f(x). 

The geometric meaning of these statements gets clear after adding tangent y = f1‘(b)(x- b) + f1(b) to 

the model and varying the b parameter. This way, students internalize the relationship between the 

increasing, decreasing and "stability" of the function and the slope of the tangent. 

A discussion of the meaning of these statements and the nuances of the dependencies between them 

becomes most productive when considering different examples with the help of this model. 

As always, counterexamples help deeper understanding of the studied subject. 

Particular attention should be paid to the fact of definite sign of the derivative over the entire interval 

(m, n) in all the above statements. 

As a counterexample, we consider the following differentiable on R function 
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The function’s derivative at point x = 0 is positive
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down fluctuations of the graph near zero arouse suspicion. Let us zoom in closer to check if the 

function really increases at point x = 0. After few clicks on “Zoom In” button  of the taskbar our 

graph becomes a straight line (Fig.3 b, c), which is surely increasing on R. One can even specify its 

                                                            
2 Abscissas of yellow points satisfy inequality. 
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slope: it is 0.1. Strange! Let us try to see if there are critical points in this interval. After all, the only 

intervals of monotonicity are those that lie between neighboring critical points of function f(x). In 

result of enabling option “show critical points”,3 our view becomes filled with vertical dotted lines 

(Fig.3 d). These intervals are contracting to a point as they approach the point 0. There is no such 

interval (-b, b) with  b > 0, which includes the zero point. Thus, function f(x) not increase nor decrease 

at point x = 0 and not monotonic on any interval, that includes x = 0, despite the fact that the derivative 

at zero exists and is positive. 

  
a)                                                                         b) 

  
                                  c)                                                                          d) 

Figure 3. Visible intervals:  

a) [-0.15625, 0.15625] , b) [-0.1953125, 0.1953125], c), d) [-0.001220703125, 0.001220703125] 

Consider following example of continuous, increasing on a finite interval (0, a) function with a non-

negative derivative.  
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     a)                                                                            b) 

Figure 4 

                                                            
3 To show critical points of a function - point with mouse to the legend of this function, press right mouse 

button and select the proper submenu in the appeared pop-up menu. Critical points presented by dotted vertical 

lines that consist of all the points with the same abscissa – the critical point. 
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(Fig.4 a) presents graph of this function. The graph increases so slowly that it is difficult to see its 

behavior. Simple zoom does not help4. Enabled show of the critical points makes things clear: the 

derivative equals to zero infinitely many times on (0, a). Really,  

 

Abscissas of the vertical lines present these zeros of the derivative.  

Enabling the show of “critical points and monotonicity (intervals)” (Fig.4 b), we find that function 

increases between the neighboring critical points5, thereby confirming that f’(x)  0. It is worth asking 

students to explain this indirectly, observing the function behavior.  

All the considered statements (Fig.2) were valid subject to the requirement of differentiability of 

function f(x) on the interval (a, b).Can a function be monotonic if it is non-differentiable at some 

points? 

To check it we take a differentiable function y = x and turn it into a non-differentiable at point x=0 

by taking modulo: y = |x|. This function is not monotonic. To “correct” the situation add to it the 

function y = k x, and let k  1. Voila! For k = 1 our new function     y = |x| + k x has become monotonic, 

although weakly. Replacing the value of parameter k with any number bigger than 1 we obtain a 

strictly monotonic function over the entire domain, although it is not differentiable at the point 0 

(Fig.5 a-c). 

             
a)                                                 b)                                                 c) 

                                       
                     d)                                                 e)                                                  f) 

Figure 5. y = |x| (a), y = |x|+k x, k = 1 (b), y = |x|+k x, k = 1.2 (c) 

y = |sin(x)| (d), y = |sin(x)|+k x, k = 1 (e), y = |sin(x)|+k x, k = 1.2 (f) 

                                                            
4 To grasp the idea of behavior change the visible y-axis interval to (-0.015, 0.015) and                                    (-

0.000015, 0.000015).  

5 The change from red to blue on an interval means that the function on it increases, and vice versa: the transition 

from blue to red means an interval of decreasing function. 

1
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The same steps related to the differentiable on R function y = sin(x), lead us to the function y = |sin(x)| 

+ k x - an example of a strictly monotonic continuous function with an infinite number of points at 

which the derivative is absent (Fig.5 d-f). 

- Give examples of strictly decreasing and weakly decreasing continuous functions with a finite 

and infinite number of points with a violation of differentiability and check these examples 

using VisuMatica. 

- Are the discontinuous - and therefore non-differentiable at the points of discontinuity - 

functions shown in Fig.6, monotonic? Define them and check using VisuMatica. 

- Give examples of strictly decreasing functions with a finite and infinite number of points of 

discontinuity, and check these examples using VisuMatica. 

      
                           a)                                                 b)                                                 c) 

Figure 6 

These were examples of monotonic functions with removable discontinuities. 

         
                                               a)                                                                          b)                      

Figure 7 

- Using the familiar examples of weakly monotonic functions containing jump discontinuities: 

y = sign (x) and y = [x], define examples of strictly monotonic functions with a finite and 

infinite number of jump discontinuities (Fig.7). 

-  Prove that there is no monotonic function containing an essential discontinuity (discontinuity 

of the second kind) 

1.2. Local extrema 

We say that function f has a strict local maximum (strict local minimum) at point a if  

( 0)( [ , ]) ( ) ( )    ( ( ) ( ))b x a b a b f x f a f x f a    − +    
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We say that function f has a non-strict local maximum (non-strict local minimum) at point a if 

( 0)( [ , ]) ( ) ( )    ( ( ) ( ))b x a b a b f x f a f x f a    − +    

All these definitions deal with four objects:  

• the function f(x),  

• the point (a, f(a)),  

• the inequality between f(x) and f(a), 

• the b neighborhood of a, which can also be expressed as inequality |x - a|  b.  

Consider the following model, based on the graph of function f(x) = 0.5(x-2)2 – 5 (Fig.8).  

The definitions of local extrema are implemented here by point M(a, f(a)), by solution of the system 

of inequalities |x – a|  b; f(x) > f(a) (in green), and by solution of the system of inequalities    |x – a| 

 b; f(x) < f(a) (in cream).  

- Does the function have a local extremum at the point x = 2, x = 2.4, x = 4? How to "verify" 

the correctness of the answer via changing the value of parameter b in the model? 

- Is it possible to give a concrete answer to the presence of a local extremum at a point using 

the model immediately, without trying to select the appropriate value of the parameter b? If 

the answer is "YES", then explain on what basis the conclusion will be that the point is a local 

extremum, and in which it is not. 

- Select the initial function f1(x) and redefine it as y=0.5[x] + sin(x) (Fig.9). Describe all the 

points of local maximum and local minimum of the function. Use model to check your 

answers. 

       

Figure 8. a = 2.2, b = 1.25 

A sufficient condition of extremum: 

Let exists such b > 0 that f(x) is continuous on |x – a|< b, exists f’(x) on 0 <|x – a|< b and 

f’(x0) does not exist or equal 0. If f’(x1)f’(x2) < 0 for every x1, x2: x0 – b <  x1 < x0 < x2 < x0 + b 

then x0 is a point of local extrema. 
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- Express this condition in terms of our model. 

- Prove that the converse statement is not true. Give a counterexample to the claim that if a 

differentiable function has a strict maximum at point x0, then there is a neighborhood of this 

point, where the function increases to the left of x0 and decreases to the right. Check it with 

VisuMatica. 

A necessary condition of extremum: 

Let x0 be a local extrema of function f and there exists f’(x0) then f’(x0) = 0.  

- Give a counterexample to disprove the opposite statement, and illustrate it VisuMatica. Have 

we seen a similar case before? 

 

Figure 9. a=1.7, b=0.36 

In conclusion, we note that VisuMatica allows you to emphasize automatically the points of local 

extrema. To do this, position the mouse pointer to the legend of the function, press the right mouse 

button and select "show local max/min". 

Fig.10 shows the result of such a choice with respect to the function 

2 1
1 2 sin
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1,  if 0

x
y if xx

x

  
+ +  
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 =

. The points of the graph corresponding to the local maximum are in 

light blue, and to the local minimum are in light red. 

 
Figure 10   

- How to recognize intervals of monotonicity of a function with enabled option "show local 

max/min"? Is it always possible? 

Note to students that the definition of extrema points does not include the concept of derivative. 
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- Consider examples in Fig.5. Guess their local extrema and check your answers with 

VisuMatica. Is there a derivative at the points found? 

- Can a function have both a maximum and a minimum at the same point? If your answer is 

"Yes", then give an example. How one can see it in the considered models with enabled option 

"show local max/min"? 

The counterexample in section 3 of [1] demonstrates a very special case of a continuous function, 

that is nowhere differentiable, nowhere monotonic, and “everywhere” has extrema points. 

VisuMatica allows also displaying the function’s infimum(s) and supremum(s): just select “show 

sup/inf” after pressing the right mouse button on function’s legend. Corresponding points if any will 

appear on the graph as large blue and red circles. Fig.11 presents visual solution of the problem of 

finding 2

| | 1

min sup | |
a x

x a


+ by means of graph of function y = |x2 + a| if |x|  1 with enabled option “show 

sup/inf”. 

          
             a = -1.4               a = -0.5                a = -0.6                a = -0.1                 a = 0.2 

Figure 11  

1.3. Convexity of function. Inflection points 

Monotonicity and extrema are not the only characteristics of the function behavior. Both graphs in 

Fig.12 a) represent increasing, and in Fig.12 b) - decreasing functions, but all the four graphs have a 

common feature – they lie on a one side from the tangent to any point on graph in a neighborhood of 

this point. Even the not monotonic functions in Fig.12 c) have the same feature. 

- When this property fails? Provide a counterexample. 

 At the same time green curves, as well as orange curves are somehow similar in shape. The curves 

in different colors "bend" in different directions, while ones with the same color "bend" in the same 

direction.  

             
                      a)                                   b)                                    c)                                   d)                   

Figure 12 
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Fig.12 d) clarifies our observations. The green segment connecting any two points on the green graph 

lies above the green curve between these points, while the orange segment lies under the orange curve 

between the segment’s endpoints.  

To make general conclusions consider the following model, based on the graph of function f1(x) = 

0.1(x+2)2 – 3 (Fig.13). Here the endpoints of segment P1P2 controlled by x1 and x2-points of their 

projection onto x-axis. Points x1 and x2 are movable manually along the x-axis. Point x0 defined as

0 1 2( )1x k x kx= +− , where parameter k  [0, 1]. Point P0 belongs to the segment P1P2 and point f0 

belongs to the graph of function f1(x). Both of them have abscissa x0.  The model also includes a red 

segment-arrow P0f0.  

By changing with slider the value of t pay attention that: 

✓ The graph on interval [x1, x2], highlighted in magenta, lies under the segment P1P2.  

✓ The red arrow always remains directed downward.  

 
Figure 13 

Both of these properties preserved when changing the values of x1 and x2 by moving these points 

along the x-axis. 

After note that the ordinates of points P1, P2, P0, f0 respectively f(x1), f(x2),                                           (1 

- k) f(x1) + k f(x2), f ((1 - k) x1 + k x2) stunts are ready for the following formal definition: 

We call function f convex downward (convex) on X if 

1 2 1 2 1 2, , [0,1] holds ((1 ) ) (1 ) ( ) ( )x x X k f k x kx k f x kf x    − +  − +  

- What is the meaning of the right and left side of this inequality? 

- Provide examples of convex functions and check your answers with VisuMatica. 

Redefine f(x1) to -f(x1). In our case it becomes y = -0.1(x+2)2 + 3.  

The graph turned upside down, and with it the red arrow. Now:  
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✓ The graph on interval [x1, x2] lies above the segment P1P2.  

✓ The red arrow directed upward.  

After some play with parameter t and points x1, x2 it is easy to grasp the following definition: 

We call function f convex upward (concave) on X if 

1 2 1 2 1 2, , [0,1] holds ((1 ) ) (1 ) ( ) ( )x x X k f k x kx k f x kf x    − +  − +  

- Provide examples of concave functions and check your answers with VisuMatica. 

- Provide counterexamples of concave/convex functions and check your answers with 

VisuMatica. How the set X affects the presence of convexity of a function? 

- What color have the convex upward/convex downward function in Fig.12?  

 

Remind our observation about location of the graph of a convex/concave function with respect to the 

tangent (Fig.12). To verify it, we introduce: 

• a new variable derivative - the derivative of function f(x) at x0 as derivative: = f1 (x0.x)', 

• a red tangent to the graph at point x0 as y = derivative * (x-f0.x) + f0.y,  

• a yellow half-plane that lie above the tangent by the inequality y > derivative * (x-f0.x) + f0.y. 

 
Figure 14 

Fig.14 shows the updated model. Select the k variable (click on it) and redefine its limits from 0, 1 to 

xMin, xMax correspondingly. 

By assigning all possible values from the visible segment of the x-axis to the variable k, we make 

sure that the graph is always completely located inside the colored half-plane, which means that it 

lies above the tangent. 

Similar activities one can organize in case of a concave function. 

Pay attention to the value of parameter derivative when grows the value of parameter k (the point x0 

moves from left to right). Try to grasp the link between the convex/concave feature of a function and 

monotonicity of its derivative. Check conclusions by adding the graph of the second derivative y = 

f1(x)”. 
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Start VisuMatica and enter some counterexample – a function that is not convex overall domain, say, 

y= sin(x) (in blue). Of course, we can add a graph of the derivative y=f1(x)’ (in magenta) and consider 

the intervals at which the derivative increases/decreases. They will be the intervals of 

convexity/concavity of the original function f1(x) (Fig.15 a). However, this observation requires some 

effort.  

Instead, let us try to provide the condition for increasing the derivative in a "primitive" form 

f1(x+TINY)' > f1(x)'. The picture has become much more expressive (Fig.15 b). Reminding, that at 

intervals of increase the sign of the function’s derivative is greater than zero, we replace the previous 

"primitive" condition with the correct one with the second derivative: f1(x)’’ > 0 (Fig.15 c).   

  a) 

  b) 

  c) 

  d) 

  e) 

Figure 15 

By changing the sign of inequality, we immediately obtain intervals of concavity (Fig.15 d). 

Where the function is neither convex nor concave? - When the second derivative equals to zero. We 

get the vertical lines after adding equation f1(x)’’ = 0 (Fig.15 e). At roots of this equation, the second 

derivative changes its sign. From concave, the function becomes convex and vice versa.  
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Figure 16 

Fig.16 presents a model, which shows the relationship between convexity, concavity and inflection 

points of a function with values of the second. It includes an inequality f1(x)’’ > 0, which highlights 

in yellow the intervals of function concavity, and equation f1(x)’’ = 0 (e1) with roots presented by 

vertical lines and their values. A tangent to the graph                                                 y = f1(m)’ (x - m) 

+ f1(m) shown in magenta. The m parameter here presents values of roots of the second derivative. 

To receive these values it defined as m: = roots (e1, n), where e1 is the legend name of equation f1(x)’’ 

= 0, and n is the index number of the specific root. 

It is easy to see that the graph of f1(x) lies on both sides of each tangent to graph at these roots by 

assigning integer values to parameter n.  

Such points called inflection points. Namely,  

Let the function f be differentiable in the punctured neighborhood [x0 – d, x0)  ( x0, x0 + d], where 

d > 0. If on [x0 - d) the function is convex/concave and on (x0 + d] it is concave /convex, then the 

point (x0, f(x0)) of the function graph is called its inflection point. 

- Give an example of such a function f for which x0 is not an inflection point, although f(x0)’’ = 

0, and check your answer with VisuMatica. 

- Provide an example of a function that is not differentiable in its inflection point and check 

your answer with VisuMatica. 

2. Sketching the function graph 

In the previous section, we limited ourselves to considering the capabilities of the software when 

studying some of the characteristics of a function.  

The sketching of a function graph is based on the results of studying its various properties. 

A typical sequence of steps when sketching a function is as follows: 

• Ascertainment of the domain, evenness, oddness and periodicity of the function, 
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• The search for discontinuity points of the function and their classification, finding the vertical 

asymptotes of the graph, 

• Finding the intersection points of the graph with coordinate axes, 

• The search for critical points of the function, the allocation of points of extrema, the 

determination of intervals of monotonicity, 

• The search for inflection points and function values at these points, establishing intervals of 

convexity, 

• Finding inclined or horizontal asymptotes of the graph functions. 

Fig.17 a) presents the skething model, which initially includes five objects:  

• (f1) Graph of function y = 4sin(x-1)/(x+2) +1 in purple. Hidden. 

• (e1) Solution of equation f1(x)” = 0 as blue marks on the x-axis: the inflection points. 

• (f2) Graph of the derivative f1(x)’ in green. Hidden. 

• (f3) Graph of the second derivative f1(x)” in blue. Hidden. 

• A purple point (0, f1(0)) on the y-axis: the intersection point of the graph with the y-axis. 

The user interface6 (Fig.18) allows visualization of the characterization features of f1(x).  

All the correspondent drawings: rectangular regions, vertical lines, arrows, isolated points and 

asymptotes automatically painted in the same color as f1(x) - in this example: purple. 

• Intervals of sign constancy emphasized by light purple rectangles. Their sides located on the x-

axis present these intervals7. These rectangles are oriented in the positive (upward) or negative 

(downward) direction according to the sign of the function on them. Naturally, all points of the 

graph lie inside these rectangular areas. 

 a)    b)                                       

Figure 17 

                                                            
6 This pop up menu becomes visible when user presses right mouse button on the icon of any function fi(x) in 

the legend. 

7  The ends of these sides-intervals are the function's zeros. 
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• The wide vertical dotted line at x = -2 with arrows8 presents the vertical asymptote.  

The upward arrow on the left of vertical asymptote hints that the graph increases without 

bounds while approaching to the asymptote when x → −− The downward arrow on the right 

of this asymptote tips-off that the graph decreases without bounds while approaching to the 

asymptote when x → −+    

       

Figure 18 

The wide horizontal dotted line at y = 1 presents the vertical asymptote. 

The two arrows on this line directed left and right prompt that graph approaches this 

asymptote as x tends to + and -.  

• The vertical dashed line at x = -2 shows the discontinuity point. It coincides with vertical 

asymptote. 

• The local maxima presented by the blue points and minima – by the red ones. There are neither 

suprema not infima (otherwise, big blue/red points would display them).  

• The critical points, where the derivative equals to zero or does not exist, displayed by vertical 

dotted lines (one of them, where the derivative does not exist, coincides with the vertical 

asymptote). The arrows in the middle of the intervals between the critical points (intervals of 

monotonicity) according to the signs of the derivative indicate the directions of function's 

increasing / decreasing. The arrow not drawn if the function is constant on this interval or interval 

is too narrow in current view. 

In case of difficulty, one can unhide graphs of the 1st and 2nd derivatives (Fig. 17 b).  

In this regard, it is not too late to note an important specialty of the derivative function: the 

domain of the derivative f ' is the set of all points in the domain of f at which f is differentiable, 

i.e. the domain of f ' is a subset of the domain of f. 

This obviously follows from the definition of the derivative, which depends on f(x). 

                                                            
8 Arrows on asymptotes appear when the graph of function is hidden.  
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For instance, considering the derivative of the logarithmic function, students should pay 

attention to the fact that it is y = 1/x, when x > 0. Fig.19 shows graphs of following three 

functions:  

f1(x): y = ln(x)’ in red,  

f2(x): y = (sin(x) + ln(x))' in dark green, and 

f3(x): y=cos(x) + 1/x + 0.1 in light green. 

VisuMatica distinguishes between the derivative of a function (f1 and f2) and f3-the function-

result of taking the derivative (we added the term 0.1 to make the right branch of the graph of 

function f3 and the entire graph of the function f2 distinguishable). 

 

                                                                          Figure 19 

This dependence between domains of the derivative and the function itself reflected in the 

exhibition of various characteristics of the derivative function. Fig.19, for instance, shows the 

points of local maximum and minimum of the derivative f2, which are exclusively within its 

domain. 

A more interesting case is the option to “show isolated points” of function (Fig.18). By 

default, these points not displayed when displaying the function graph. A thoughtful user may 

suspect their presence and request to show them. 

Consider, for example, the graph of the function y = |sin(x) + 0.5| - 0.5. With enabled show of 

critical points, it looks rather understandable (Fig.20 a). Now let's replace this function with 

the square root of its expression y = sqrt(|sin(x) + 0.5| - 0.5) (Fig.20 b). It is quite obvious that 

even though the sections of the graph with negative values of the original function have 

reasonably disappeared, at the same time the points of touch of the x-axis from below, which 
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should still belong to the new graph, have disappeared. Enabling option “show isolated 

points”, we get these points on the screen9 (Fig.20 c). 

            
                              a)                                            b)                                            c) 

Figure 20 

Based on the analysis of the behavior of the function and its derivative, let us try to sketch its graph. 

For this purpose, we will use the “Freehand curve” mechanism, and launch it by clicking the toolbar 

button .  

From now on, each click of the left mouse button adds a control point of the future smooth curve. 

This work completed by clicking the right button, which adds the last point, resulting construction 

and show of the final curve, which approximates the control points. 

Consider the application of this mechanism using the example of the model presented in Fig.17.  

It is clear that graph in the visible interval has two branches on both sides of the vertical asymptote x 

= -2. When starting sketching the left branch we take into account both asymptotes, especially the 

vertical one: the curve goes to +  when x approaches to -2 from left, according to the direction of 

left purple arrow next to the vertical asymptote in Fig.17 a).   

In addition, the graph for sure passes through the common vertices on the x-axis of the light-purple 

zones of constant sign, and through two more points: the blue point of the local maximum and the 

red point of the local minimum. Well, the first should be some point at the left border of the visible 

domain. It should be below the local maximum, because there the function increases, judging by the 

direction of the left oblique arrow.   

We start the curve construction mode, and by clicking on these points, we get the curve shown in 

Fig.21 a).  

Unpleasant result: we tried to click as accurately as possible on the previously discussed control 

points, but the result is not very good - the points of local extrema do not coincide with the extrema 

points of the resulting curve. 

                                                            
9 Unfortunately, the well-known CAS systems, for example Maple and Mathematica, are unable to take into 

account these subjects. They show graph of the derivative of logarithm as hyperbola with two branches. The 

also incapable to graph isolated points. 
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Let us check if the control points were set inaccurately. Click the icon of this curve in the legend area. 

The curve becomes selected (red) (Fig.21 b). 

All control points now are visible and located where they should be... Of course, it is all about the 

mechanism of constructing this curve! It "does not know" what we are trying to approximate. Let us 

fix our curve. Move the mouse pointer to the control point corresponding to the blue point of the local 

maximum, press the left mouse button and start dragging the selected control point to a more suitable 

position so that the curve at the point of local maximum really depicts the desired behavior (Fig.21 

c). Release the button. ...Done. 

         
                          a)                                                b)                                                c) 

Figure 21 

Similarly, we construct and fix the second branch. In this case, pay special attention to the blue marks 

on the x-axis - the inflection points. Do not forget about the point of the graph on the y-axis.  

To refine the behavior of the curve, one can add few more control points. It is also easy to delete 

unnecessary control points. 

For a more detailed featuring of the curve, place the mouse pointer at a certain control point and press 

the right mouse button. In the pop-up menu that appears (Fig.22 a), we make a suitable choice: (1) 

delete the curve, (2) redefine it, or (3) show and/or change the exact coordinates of this control point. 

Selecting the second option opens a dialog "Redefine/Format curve" (Fig.22 b), which allows to 

define curve’s color and width, and some characteristics if the control points. Special attention should 

be paid to the possibility to set the curve style. It can be a T-spline (default), Lagrange curve or B-

spline. The name of a Lagrange curve shown in Legend as fi. One can use it in expressions in the 

same way as any other explicit function of one variable, for example, y = fi(x-3)+2. The T- and B-

splines names coded in the Legend as hi and not suitable for this purpose.   

The checkbox “sort by x” by default is checked to guarantee the impossibility of any two points of a 

curve to have coincident projections on the x-axis.  
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                                                 a)                                                                  b)   

Figure 22 

If one suspects a function periodicity, it is enough to sketch a curve at a proper interval, locate the 

mouse pointer at curve’s name in Legend, press the right mouse button and select the option "replicate 

along the X-axis".  

If function is odd or even it will be sufficient to sketch the graph only for x   or  x  0, press the 

right mouse button and select the option "duplicate by central symmetry with regard to the origin" or 

"duplicate by axial symmetry with regard to the Y-axis". 

To check the result of graph sketching one just unhide the graph of f1(x) and compare it with the 

constructed sketch. 

Models of VisuMatica are universal. To build a sketch of a graph of another function, it is enough to 

redefine f1(x) and the whole show (except of old sketch) rebuilds automatically.    

Note, that it is not always advisable to enable all options of the built-in automatic featuring 

mechanism (Fig.18). Thus, for example, in the case of f1(x) = [x], the only choice of displaying the 

local minimum/maximum immediately "gives out" the graph itself10 (Fig.23 a).  

On the other hand, after “slight” change of the function’s expression to f1(x) = [x] + x, even enabling 

the show of all these features is insufficient to grasp the graph’s behavior (Fig.23 b). 

Displaying the graph of derivative (the blue horizontal line with punctured points of integer abscissas) 

provides additional information. In a result of analyzing the fact that f1(x)’ = 1 on each interval of 

continuity, we come to the conclusion that this is not enough to sketch the graph of the function. It is 

necessary to have at least one point in each of these intervals. 

 

                                                            
10 The points, colored in both blue and red, are simultaneously a local maximum and minimum. 
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a)                                                                    b) 

Figure 23 

Displaying the function's Domain (blue) and Range (green) also does not help (Fig.24 a). Only after 

enabling their show with correspondent trapezoids, we receive an even too expressive help (Fig.24 

b). This help remains redundant with only one group of trapezoids.  

 
                                   a)                                                                    b) 

Figure 24 

Conclusions 

In a result of sketching various examples using similar models, students find that it is not necessary 

to utilize all the features of the software. One should find the minimal way that provides enough 

information to solve the problem. 
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After such materialized activities with the gradual removal of the hint, students are ready to move on 

to manual sketching. 

Computer-free graph sketching skills remain an important part of mathematical culture. In doing so, 

one can follow, for example, the steps outlined at the beginning of this section, and perform some 

features of the model by hand. The practice of the choice of the minimum and sufficient set of these 

steps develops students’ intuition and a deep understanding of the qualitative component of the 

formed knowledge. 

Supplementary Electronic Materials  

Videos with animations: https://sites.google.com/view/animationssketching/home 

VisuMatica in a configuration that supports the above modeling is under construction. 
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